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SYNOPSIS 

The literature provides several size-exclusion theories to predict solute exclusion by highly 
swollen hydrogels. Theoretical calculations are compared to the experimental data of 
Walther et  al. (1993) for partitioning of poly(ethy1ene g1ycol)s and poly(ethy1ene oxide)s 
of various molecular weight into hydrogels made of poly-N-isopropylacrylamide or poly-2- 
hydroxyethyl methacrylate/dimethylaminoethyl methacrylate. Experimental size-exclusion 
curves can be correlated almost equally well by theories which characterize the gel as a 
collection of pores or of fibers; differences between these two theories are important only 
for partition coefficients near zero or unity. The experimental data of Walther et al. can 
be predicted best by Schnitzer’s uniform pore model. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The distribution of solutes between a gel and its 
surroundings is important in several applications of 
gels. For example, the effective separation of a mix- 
ture of solutes by liquid column chromatography 
depends on the relative equilibrium distribution 
(partitioning) of the different solutes between the 
chromatographic packing and the solution flowing 
through the column. The equilibrium distribution 
of a solute between a gel and its surroundings is 
characterized by the solute partition coefficient, 
which we define as the ratio of the concentration of 
the solute in the gel to that in the gel’s surroundings. 

Solute distribution into a swollen polymer net- 
work (gel) depends on the interactions of the solute 
with the polymer network. The simplest realistic 
interaction between a solute and a polymer network 
is steric exclusion; the solute may not occupy any 
space simultaneously occupied by the polymer. For 
simple size exclusion, the potential of mean force 
between a solute and the polymer is infinite for sol- 
ute-polymer separations smaller than the distance 
of closest approach (defined solely by the geometry 
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of the solute and polymer) and zero for solute-poly- 
mer separations greater than the distance of closest 
approach. Considerable theoretical effort has been 
expended to describe the steric or size exclusion of 
solutes by porous media; the main difficulty lies in 
properly characterizing a medium where the ge- 
ometry is unknown. Therefore, the medium is usu- 
ally modeled as a collection of volume elements of 
uniform geometry. 

To predict theoretically the complex situation 
where there may be attraction between gel and sol- 
ute, we must first be able to predict, or a t  least cor- 
relate, steric exclusion. To assure that we have pre- 
dicted size exclusion successfully, we must compare 
calculated results to experimental partitioning data 
taken for a solute which experiences only steric in- 
teractions with the network. In principle, this is 
possible, but as Hussain et al. discussed, such an 
ideal solute may not exist.’ Thus, we compare cal- 
culations to experimental data for those systems 
where we hope to have minimized other interactions. 
We evaluate how well existing models predict and 
correlate size-exclusion phenomena so that we may 
use these models, in part, toward prediction of par- 
titioning in more complicated systems. 

We begin by comparing the partition coefficients 
predicted by several size-exclusion models. We ex- 
amine the qualitative dependence of the partition 
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coefficient on solute size and on nominal gel-com- 
position parameters. Hussain et al.' presented an 
excellent comparison of how size-exclusion models 
can be used to correlate experimental partitioning 
of polymers in porous glass or Sephadex, which are 
not highly swollen. Hussain et al. concluded that 
the best way to correlate experimental data is to use 
a size-exclusion model which accounts for a pore- 
size distribution; this distribution, however, must 
be determined experimentally. For gels, it is difficult 
to obtain pore-size distribution data; therefore, such 
data are scarce. 

In the size-exclusion-chromatography literature, 
two descriptions are used for the morphology of the 
porous medium (the hydrogel). In the fiber model, 
the swollen polymer network is a meshwork of cy- 
lindrical fibers. The morphology of the matrix is 
characterized by dimensions of the fibers themselves. 

In the pore model, the swollen polymer network 
is a solid phase containing a number of pores of 
some defined geometry (planes, spheres, or cylin- 
ders). The morphology of the matrix is characterized 
by some measure of the mean size of the pore and 
sometimes also by the distribution of pore sizes. The 
pore and fiber models are basically equivalent but 
inversely related in perspective; one attempts to 
characterize the volume occupied by the fibers, and 
the other attempts to characterize the volume not 
occupied by the fibers. 

For hydrogels, the concept of a pore-size distri- 
bution is ambiguous because we do not expect the 
space between polymer strands to be simple, uniform 
tubes. The pore-size distribution of a hydrogel can- 
not be easily determined, except perhaps through 
data from solute partitioning experiments-the very 
type of data one hopes to predict. In the absence of 
suitable partitioning data, the pore size of a gel may 
be estimated by half the corresponding mesh size of 
a solution of uncrosslinked polymer: which returns 
us to the perspective of the fiber model. Predictions 
of fiber and pore models should agree to a large ex- 
tent. We now examine whether this is indeed the 
case. 

THEORETICAL CALCULATIONS 

Models for Size Exclusion 

From the work of Ogston? Laurent and Killander4 
developed the following expression (the LKF model) 
for the partitioning of a spherical solute of radius r, 
into a solution of randomly arranged rigid rods of 
radius r f :  

K = exp[-aL(rf + r,)'] (1) 

where K is the partition coefficient of the solute (here 
equal to the fraction of the gel volume accessible to 
the solute) and L is the length of the fibers per unit 
volume.+ 

Schnitzer also derived general expressions for the 
volume fraction accessible to a solute particle.' For 
uniform distributions of volume elements, where in 
each subunit volume the polymer chains can only 
adopt a single conformation, the expressions derived 
by Schnitzer agree with those of Ogston, who treated 
spherical  solute^,^ and those of Giddings et al., who 
considered nonspherical geometry? Yasuda et al.7 
and Peppas and Reinhart' also investigated the vol- 
ume fraction accessible to a rigid solute; however, 
their work concerns solute permeation through 
membranes. 

For random distributions of volume elements, 
where in each subunit volume the polymers can 
adopt many conformations, Schnitzer's expressions 
agree with those of Giddings et al. in the limit of a 
low polymer volume fraction and infinitely small 
solutes. Schnitzer's expressions are able to correlate 
quantitatively data in electrophoresis and size-ex- 
clusion chr~matography.~ For the distribution of a 
spherical solute in a randomly oriented and distrib- 
uted meshwork of cylindrical fibers, neglecting fiber- 
end effects, Schnitzer developed the following 
expression (the SRF model): 

where v z  is the volume fraction of the gel excluded 
to a point solute. The volume fraction of the gel 
excluded to a point solute may be estimated by the 
volume fraction of the polymer in the gel phase (&). 
The solute radius is taken to be the hydrodynamic 
radius (Rhyd) obtained from the Stokes-Einstein 
equation: 

where kb is the Boltzmann constant; qo, the viscosity 
of the solvent; Do, the diffusion coefficient of the 
solute at infinite dilution; and T, the temperature. 
The fiber radius can be estimated by electron mi- 
croscopy or, in the absence of such data, by assuming 
that the radius of the fiber is approximately the 

The length of fibers per unit volume is given by L = (1/V) 
X,n,L,,  where L, is the length of an individual fiber and n, is the 
number of fibers in volume V .  
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length of the longest repeated pendant group on the 
polymer backbone.' 

For the volume exclusion of spherical solutes in 
cylindrical pores, Schnitzer derived the following 
expressions5: 
For uniformly distributed pores (the SUP model): 

K = Y,o(1 - p)2 (4) 

for randomly distributed pores (the SRP model): 

K = exp(v: - l)exp(P2 - 20) ( 5 )  

where p is the ratio of solute to pore radius, rs/rp, 
and u; is the volume of pore space per unit volume 
(the porosity). 

Universal calibration curves in size-exclusion gel 
chromatography are often constructed using parti- 
tioning data for polymeric solutes. The conformation 
of a polymer in solution fluctuates about some equi- 
librium average, and the average volume in which 
the polymer chain resides, but does not necessarily 
fill, is often described as a sphere of given radius. 
Because the polymer can adopt different configu- 
rations, it is possible for a polymer whose average 
occupied space is characterized by a radius r to pen- 
etrate a given matrix to a greater extent than a rigid 
sphere of the same radius r. An example is provided 
by the well-known reptation mode of polymer dif- 
fusion, whereby the polymer moves through a matrix 
of obstacles much as a snake through a dense sugar- 
cane field. Clearly, if the snake were to adopt a 
spherical conformation and t ry  to roll into the center 
of the field (where the mean spacing between canes 
is on the order of the radius of the balled-up snake), 
it would not be able to move through as much of the 
field as if the snake were to slither normally. Casassa 
was the first to consider this effect for random-flight 
chains penetrating pores of simple geometry? For 
cylindrical pores, Casassa found the following 
expression, valid for the limiting case of a chain of 
an infinite number of vanishingly small segments: 

Here, we assume that the spatial distribution of pendant 
groups around the polymer backbone describes a cylinder whose 
axis is the polymer backbone. The radius of this cylinder is the 
length of the pendant group. 

where Jo denotes the Bessel function of the first kind 
of order zero and (s2) is the mean square radius of 
gyration for the chain 

Davidson et al. performed Monte Carlo simula- 
tions to expand the work of Casassa to account for 
finite numbers of chain segments of finite length." 
They approximated the Monte Carlo results with 
the following expression (the DP model): 

+ (1/rp)(0.49 + 1.09X~ + 1.79Xi) (8) 

A(; = w / r p  (9) 

where 1 is the step length of the polymer chain. 

Casassa's partition coefficient is not the same as ours. Cas- 
assa's partition coefficient is the ratio of the concentration of a 
solute inside the pores of the matrix to that outside the matrix 
and therefore does not take into account the volume of the matrix. 
This can be seen by comparing the values of the partition coef- 
ficient for infinitely small solutes. By our definition, the partition 
coefficient of an infinitely small solute would be equal to 1 - vz 
(= 1 - &). Casassa's results show a partition coefficient of 1 for 
infinitely small solutes. Therefore, to compare properly Casassa's 
predictions to experimental data, we must multiply Casassa's 
partition coefficient by the factor (1 - &,) to obtain the correct 
limiting behavior. 
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Figure 1 Effect of solute radius on partition coefficient 
for partitioning of PEG and PEO into poly-NIPA hydro- 
gels (15%T, 1%C) in water at  25°C. Experimental data 
are shown by filled squares. Calculated partition coeffi- 
cients using five models for size exclusion are also pre- 
sented (lines). A fiber radius of 5.5 8, was used in all fiber- 
model calculations, and a pore radius of 262 8, was used 
in all pore-model calculations. Calculated partition coef- 
ficients are predictions. 
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Prediction of Size Exclusion 

In Figure 1, we compare partition coefficients for 
solutes of differing radius calculated using the mod- 
els discussed above. The matrix is a poly(N-isopro- 
pylacrylamide) (poly-NIPA) hydrogel (15%T, l%C) 
in 0.001M NaN3 (as an antibacterial) a t  25°C where 
the parameters %T and %C are defined by 

% C  mol % crosslinking monomer, 
%T: g of total monomer/100 mL water at syn- 

thesis. 

The volume fraction of this hydrogel is approxi- 
mately 0.07, based on the swelling capacity reported 
by Walther et al.13 Because swelIing of poly-NIPA 
hydrogels is extremely sensitive to temperature a t  
ambient and near-ambient conditions, size-depen- 
dent solute separation and concentration schemes 
have been proposed which take advantage of the 
unique swelling behavior of poly-NIPA gels. We 
therefore desire to predict the partition coefficients 
for solutes into poly-NIPA gels. Walther et al. mea- 
sured the distribution of poly(ethy1ene glyco1)s 
(PEG) and poly(ethy1ene oxide)s (PEO) between the 
external solution and poly-NIPA gels; his data are 
also presented in Figure 1 for cornpari~on.'~ We do 
not expect the calculated partition coefficients to 
agree with the experimental data of Walther et al., 
because these data clearly illustrate that size exclu- 
sion is not the only mechanism governing the solute 
distribution. We merely wish to compare the qual- 
itative behavior of predictions where model param- 
eters are not obtained from partitioning experi- 
ments. Based on this comparison, we select the sim- 
plest, qualitatively correct model and attempt to 
represent size-exclusion effects by adjusting one of 
the model parameters, such as the fiber or pore ra- 
dius. This adjustment allows us to progress later to 
the more interesting and difficult task of predicting 
partition coefficients of proteins in charged hydro- 
gels. 

We now briefly discuss how the parameters for 
each model were obtained for the 15%T, 1%C poly- 
NIPA gel at 25°C. For the fiber-matrix models [LKF 
model, eq. ( l) ,  and SRF model, eq. (Z)], the fiber 
radius was obtained by using standard bond lengths 
and angles to calculate the length of the groups ex- 
tending from the carbon backbone of the polymer. 
For poly-NIPA, the fiber radius was calculated to 
be approximately 5.5 A. This calculation presup- 
poses that individual polymer strands are not bun- 
dled together. In the LKF model [eq. (l)], the fiber 
length density (L) was then calculated from the 

polymer volume fraction (&) and the fiber radius 
(rf). In the SRF model, the fractional volume inac- 
cessible to a point solute (v:) was taken to be the 
polymer volume fraction (&). 

The mean pore radius [needed for eqs. (4)-(9)] 
was determined as one-half the mesh size (0 cal- 
culated by following the methods of Peppas et al.' 
The mesh size of a polymer matrix is related to the 
volume fraction of polymer and the mean end-to- 
end distance of the chains of the network as defined 
by the crosslink density: 

where (&e)  is the mean square end-to-end distance. 
The mean square end-to-end distance for a random- 
flight chain is related to the mean square radius of 
gyration: 

Kubota et al. measured (via light scattering) the radii 
of gyration for linear poly-NIPA in water as a func- 
tion of molecular weight and temperat~re. '~ To es- 
timate the average moIecular weight between cross- 
links, Mc, the nominal %C was used: 

where MWmOnOmer is the molecular weight of the 
monomer. The average molecular weight between 
crosslinks was determined to be 5600 g/mol. The 
shortest poly-NIPA studied by Kubota et al. had a 
molecular weight of 1.63 X lo6 g/mol and a radius 
of gyration ((sZ)'/') at 20°C of 510 A. Using the fol- 
lowing scaling method, the radius of gyration for 
poly-NIPA of molecular weight 5600 g/mol was es- 
timated to be approximately 95.3 A: 

T-8 
8 

7=- (15) 

where 8 is the theta temperature, here defined as 
that temperature where the second osmotic virial 
coefficient for the polymer becomes zero (30.6"C for 
poly-NIPA) and N is the number of monomers of 
the chain (the degree of polymerization). For this 
value of the radius of gyration, the pore radius was 
262 A. The DP model [eqs. (8)-(9);'*] also requires 
the Iength of a segment of the polymer chain, which 
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we took to be 2.52 A, the approximate distance be- 
tween alternate carbons on the backbone. 

The partition coefficients calculated using the 
LKF and SRF models are virtually identical, which 
we expect because the volume fraction of polymer 
is low. The shape of the size-exclusion curve (the 
curve defined by the relation between partition coef- 
ficient and solute radius) is sigmoidal, as obtained 
from experiment. The size-exclusion curves obtained 
using the SUP and SRP models are sinusoidal, as 
are those for the fiber matrix (LKF and SRF) mod- 
els, but the region where the partition coefficient is 
most sensitive to solute radius appears broader. This 
region is of primary importance for applications 
where gels are used to separate solutes of different 
sizes. The SRP model incorrectly predicts that, in 
the limit of equal solute and pore radii, the partition 
coefficient approaches exp(-1 - v:). Therefore, we 
do not consider further the random-pore (SRP) 
model. The DP model predicts slightly lower par- 
tition coefficients when rJrP 2 0.5 as compared to 
the SUP model but has the more correct limiting 
behavior for polymer chains, viz., partition coeffi- 
cients are not zero for (s2)1/2/rp 2 1. The corrections 
of Davidson et al. become significant when the seg- 
ment size approaches the pore radius; for relatively 
highly swollen gels (such as the poly-NIPA gel con- 
sidered here), the corrections of Davidson et al. are 
not significant. A closer examination of the general 
shapes of the size-exclusion curves predicted by the 
fiber (LKF and SRF) and uniform cylindrical-pore 
models (SUP) reveals that the experimental data 
are (surprisingly) well bounded by the two models; 
the pore model represents the data for small solute 
radii better, while the fiber model is better for larger 
solute radii. We emphasize that the calculations re- 
quire no data from partitioning experiments. 

Size-exclusion curves depend on the volume ex- 
cluded by the matrix. For a hydrogel, the volume of 
the matrix at equilibrium in excess water depends 
on gel composition and on synthesis and solution 
conditions. Walther et al. also reported data for the 
same gel and solutes a t  32"C, where the volume 
fraction of the polymer is approximately 0.15, twice 
that at 25"C.13 For a solute of a given radius, the 
ratio of the partition coefficient at 32°C to that at 
25°C was calculated using the SUP and SRF models. 
Figure 2 compares calculated results to experimental 
data. The fiber model (SRF) predicts a much more 
significant decrease in partitioning with the tem- 
perature increase as compared to the pore model 
(SUP). For solute radii less than 30 A, the SUP 
model represents the effect of temperature fairly 
well. Freitas reported partitioning data for PEG 3400 

1 

Solute Radius, A 
Figure 2 Effect of temperature and solute radius on 
partitioning of PEG and PEO into poly-NIPA hydrogels 
(15%T, 1%C) in water at  25" and 32°C. Experimental 
data are shown by filled squares. Calculated results are 
shown by lines. Calculated results show that the partition 
coefficient declines as temperature increases. The partition 
coefficier t declines more for large solutes than for small 
solutes. The experimental data do not exhibit the same 
pattern of decrease in the partition coefficient as that 
shown by the calculated results. 

in poly-NIPA gels of varying %C (8%T).15 For these 
data, the calculations based on the SRF model lie 
much closer to the experimental data than do those 
based on the SUP model (Fig. 3). Freitas also re- 
ported partitioning data for PEG 3400 in poly-NIPA 
gels of varying %T (1%C), but the dependence of 
the swelling capacity on %T obtained from his ex- 
perimental data is not monotonic, contrary to our 
experience. Therefore, we did not evaluate the size- 
exclusion models for varying-% T poly-NIPA hy- 
drogels." 

The effects of %T or %C are taken into account 
differently in the pore (SUP, SRP, and DP) and 
fiber models (LKF and SRF). In the fiber model, 
the effect of %Tor %C appears only in the parameter 
u,", which is simply a measure of the water content 
of the swollen gel. In the calculations performed 
above, the effect of %C in the pore model is taken 
into account in both parameter u: and the pore radius 
(via the calculation of the molecular weight between 
crosslinks using the nominal crosslink density). The 
effect of %T in the pore model in the calculations 
above is not taken into account via the pore radius. 
However, we do not expect the true crosslinking of 
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Figure 3 Effect of %C on the partition coefficient for 
PEG 3400 in poly-NIPA gels in water. The partition coef- 
ficient was normalized to that for the gel with l%C to 
determine whether Schnitzer’s pore and fiber models could 
correctly account for the effect of increasing %C. The cal- 
culated results using the fiber model (solid line) agree best 
with the experimental data (squares). Experimental data 
from Freitas.” 

the gel to be the nominal %C. This expectation is 
confirmed by swelling equilibria which show signif- 
icant effects of % T, theoretical calculations cannot 
describe quantitatively the effects of %T.l63l7 If we 
could calculate the effective topographical crosslink 
density a t  various % T  and %C, we might then be 
better able to calculate the relative effects of chang- 
ing %C and %Ton  size-exclusion curves. We realize 
that effective crosslink densities depend on their 
method of determination; previous work has indi- 
cated that crosslink densities based on stress-strain 
measurements differ from those based on swelling 
measurements.18 Unfortunately, there are not suf- 
ficient data in the literature to predict confidently 
effective crosslink densities for poly-NIPA hydro- 
gels. 

Therefore, to examine better the effects of %T 
and %C, we considered hydrogels of 2-hydroxyethyl 
methacrylate (HEMA), because sufficient data exist 
to estimate effective crosslink d e n s i t i e ~ . ~ ~ ’ ~ - ~ ~  Unlike 
poly-NIPA hydrogels, poly-HEMA gels are not 
temperature-sensitive. Walther et al. also reported 
data for partitioning of PEG and PEO into cationic 
poly-HEMA/dimethylaminoethyl methacrylate 
(DMA) hydrogels of varying %C and %Tin aqueous 
NaN3.22 The molecular weight between effective 

crosslinks was calculated using information from 
swelling equilibria for the cationic gels and from 
stress-strain measurements on neutral poly-HEMA 
gels. The molecular weight between effective cross- 
links was smaller than that calculated using the 
nominal value of %C, so much so that the size-ex- 
clusion curves predicted using an  effective crosslink 
density were much farther removed from the ex- 
perimental data than either the calculations with 
the SRF model or the SUP model using the nominal 
%C. The effective crosslink density did not help in 
predicting the effect of %C on the size-exclusion 
curves. Thus, we conclude that for the cationic poly- 
HEMA/DMA gels calculation of an  effective cross- 
link density is an unnecessary effort. For neutral 
gels, this approach may be of some use, but we did 
not have appropriate data to pursue that approach. 

The models were derived for solutions infinitely 
diIute in solute, and, therefore, the calculated par- 
tition coefficient does not depend on solute concen- 
tration. Fanti and Glandt investigated the concen- 
tration dependence of solute partitioning with den- 
sity functional theory and Monte Carlo simula- 
tion.23,24 We used their Monte Carlo results for par- 
titioning of hard spheres into a fibrous matrix to 
determine whether concentration effects were im- 
portant for the range of polymer concentrations used 
by Walther e t  al. The correction for the effect of 
solute concentration was negligible. 

Correlation of Size-Exclusion Data 

From the observations in the previous section, we 
chose to fit experimental partitioning data for PEG 
and PEO in poly-NIPA and poly-HEMA/DMA hy- 
drogels using the SRF and SUP models. Only one 
parameter was adjusted in each model: rf for the fiber 
model and rp for the pore model. We minimized the 
sum of the squared residuals between calculated and 
experimental values reported by Walther et al. The 
resulting best-fit radii are compared in Table I with 
the a priori-calculated radii and the mean pore radii 
determined by Walther e t  al. using the model of 
C a s a ~ s a . ~  Figure 4 presents a comparison of size- 
exclusion curves calculated with fit and predicted 
(nonfit) parameters with experimental data for PEG 
and PEO partitioning in poly-NIPA hydrogels a t  
32°C (15%T, l%C). The difference between size- 
exclusion curves using the fit (21 A) and calculated 
(5.5 A) values of the fiber radius (SRF model) is 
much greater than that between the corresponding 
curves for the SUP model (fit pore radius: 81 A; 
calculated pore radius: 111 A). Nevertheless, when 
used to correlate experimental data, both SRF and 
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Table I 
Parameters for Size-Exclusion Models 

Comparison of Fit and Predicted 

Gel: polv-NIPA, 15%T, 1%C 

Parameter (A) 25°C 32°C 

Pore radius (Walther, 1993) 
Pore radius, fit 
Pore radius, predicted 

Fiber radius, fit 
Fiber radius, predicted 

54.2 
163 
262 

21 
5.5 

28.5 
84 

111 

21 
5.5 

Gel: poly-HEMA/DMA, 65%T, various %C and %DMA, 25°C 

Gel* 
Parameter 

(A) 1 2 3 4 5 6 

Pore radius (Walther et  all3) 68 138 74 74 62 66 
Pore radius, fit 161 207 138 136 123 130 
Pore radius, predicted 108 136 108 125 55 58 

Fiber radius, fit 21 17 19 11 14 14 
Fiber radius, predicted 6.3 6.3 6.3 6.3 6.3 6.3 

* Gel %C %DMA Polymer volume fraction 

1 0.2 10 0.073 
2 0.2 10 0.037 
3 0.2 7 0.075 
4 0.2 7 0.047 
5 0.2 10 0.069 
6 0.2 10 0.058 

SUP models predict virtually the same size exclusion 
curve, as expected. This agreement implies that we 
can use either model, adjusting only one parameter, 
to correlate experimental size-exclusion data. If we 
wish to predict the size-exclusion curve for a material 
where the pore-size distribution is unknown, we can 
use the uniform cylindrical pore model (SUP) pro- 
vided that the end-to-end distance of the uncros- 
slinked polymer chains (of which the network is 
synthesized) is available experimentally from data 
such as light scattering. Figure 5 presents similar 
data as in Figure 4 but for a poly-HEMA/DMA hy- 
drogel in 0.0018 MNaN3 (65%T, 0.8%C, 10%DMA). 
The observations based on Figures 4 and 5 are the 
same. The best way to predict size-exclusion effects 
for a particular solute in a particular gel is to know 
the pore-size distribution. We illustrate this by 
showing results from calculations by Walther et al. 
using the pore-size distributions that they obtained 

in Figures 4 and 5. These calculations, described in 
detail in Refs. 11 and 20, do indeed better approx- 
imate the experimental data than does the fiber or 
pore model. 

Returning to Table I, we observe that the cal- 
culated pore sizes are larger than the fitted pore sizes 
for the poly-NIPA gels and vice versa for the poly- 
HEMA/DMA gels. The mean pore sizes determined 
by Walther et al. are always smaller than those ob- 
tained by fitting the SUP model to the data. Pre- 
sumably, the fitted pore sizes are larger than the 
experimentally derived mean pore size because the 
fitted pore size must compensate for the true dis- 
tribution of sizes with a single parameter; that this 
can be done well is remarkable. For a given pair of 
gels of the same composition but different volume 
fractions, the ratio of the fitted pore sizes is the same 
as the ratio of mean pore sizes reported by Walther 
et al. The ratio of the fitted pore size to the mean 
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Figure 4 Effect of solute radius on partition coefficient 
for partitioning of PEG and PEO into poly-NIPA hydro- 
gels (15%T, 1%C) in water a t  32°C. Experimental data 
are shown by filled squares. Calculations by Walther et  
al. agree best with experiment. Calculations using 
Schnitzer's fiber and pore models with adjusted and a 
priori parameters are shown for comparison. The fiber 
and pore models, when fit to experiment, predict essen- 
tially the same size-exclusion curve. Of the a priori cal- 
culations, the pore model agrees best with experimental 
data. The fit value of the fiber radius is 21 %.; the estimated 
value is 5.5 A. The fit value of the pore radius is 84 A; the 
estimated value is 111 A. 

pore size is nearly constant for the poly-NIPA gels 
(3.0) and for the poly-HEMA/DMA gels (2.0) with 
the exception of the data for the 65%T 0.2% 
10%DMA poly-HEMA/DMA gels. Further, it is 
tempting to conclude from the data for the poly- 
NIPA gels that the mean pore size is inversely re- 
lated to the volume fraction of the polymer; the vol- 
ume fraction of the polymer at  32°C is 1.9 times the 
volume fraction at 25"C, and the mean pore size at  
25°C is 1.9 times the mean pore size at  32°C. Un- 
fortunately, this relationship is not borne out nearly 
as well by the data for the poly-HEMA/DMA gels. 

CONCLUSIONS 

This work discusses how to predict or correlate size- 
exclusion effects in hydrogels. Calculated results are 
compared to experimental partitioning data in poly- 
NIPA and poly-HEMA/DMA hydrogels. A quan- 
titative understanding of size-exclusion effects is 
necessary as a starting point for the prediction of 

partition coefficients for solutes whose interactions 
with hydrogels go beyond free-volume effects. The 
best quantitative understanding is provided by ex- 
perimental pore-size distribution data for the ma- 
terial; such data provide the well-known universal 
calibration curves in size-exclusion gel chromatog- 
raphy. Once obtained, the experimental size-exclu- 
sion curve can be correlated almost equally well by 
an appropriate pore or fiber-matrix model. However, 
the necessary experimental effort is large, perhaps 
prohibitively large. An a priori calculation would 
save much time and effort. 

The distribution coefficient derived for the ran- 
dom-cylindrical-pore model by Schnitzer ( SRP 
model) is incorrect in the limit where the solute ra- 
dius approaches the pore radius. When fit to exper- 
imental data, differences between cylindrical-fiber- 
matrix models (LKF and SRF) and cylindrical-pore 
models (SUP and DP) are greatest for partition 
coefficients near zero or unity. Models accounting 
for the flexibility of polymeric solutes are most rel- 
evant for polymeric solutes whose radius of gyration 
is on the order of or greater than the mean pore size. 
The effects of solute concentration are insignificant 
at  solute volume fractions of 1% as used in size- 
exclusion experiments by Walther et al.22325 

1.2 4 
Experiment 

Model - . SUP. fit (130A) .... SRF.fit (14A) 
- - Walther et al - SUP. predicted (!SEA) 

I 

0.2 4 \ '''.>, Walther et al 
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Solute Radius, A 
Figure 5 Effect of solute radius on partition coefficient 
for partitioning of PEG and PEO into poly-HEMA/DMA 
hydrogels (65%T, 0.8%C, lO%DMA) in 0.0018M aqueous 
sodium azide at  25'C. Experimental data are shown by 
filled squares. Calculations by Walther et al. agree best 
with experiment. For comparison, calculated results are 
shown for Schnitzer's pore and fiber models with fit pa- 
rameters and for Schnitzer's pore model with an estimated 
pore size. 
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For the design of novel gels, it is desirable to pre- 
dict the size-exclusion curves, especially as a func- 
tion of polymer volume fraction, %T,  and % C .  Such 
predictions provide guidance for the synthesis of a 
gel for a particular application where the permeation 
of a specific solute is important. At present, it is not 
possible to do this quantitatively, but calculations 
using Schnitzer's uniform-cylindrical-pore model 
(SUP) appear to provide the best a priori estimate 
for the effects of polymer volume fraction. In the 
data examined here, the volume fraction of polymer 
constituting the network was not greater than 15% 
at  equilibrium, and the polymeric solutes were suf- 
ficiently flexible and dilute to permit neglect of the 
corrections of Davidson et a1.I2 and Fanti and 
Glandt.23 

The SUP model requires knowledge of the poly- 
mer volume fraction (or swelling capacity), solute 
radius, and pore radius at conditions where we wish 
to know the size-exclusion curve. The pore radius 
can be estimated by using the nominal crosslink 
density and light-scattering data for the confor- 
mation of the polymer. The effect of % T o n  the to- 
pographical crosslink density enters in the calcu- 
lation of the size-exclusion curve only through its 
effect on the polymer volume fraction because we 
assume that entanglements are quite loose. The ef- 
fect of %T and %C could perhaps be better taken 
into account by calculating an effective crosslink 
density using stress-strain measurements, but our 
attempts to do so were not successful. Predicting 
the effects of %T and %C on size-exclusion curves 
remains an area for continuing research. 
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1 
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T 
%T 

V 
X 

Greek 

P 
0 vc 

B 

diffusion coefficient of solute at infinite 

Boltzmann's constant (J  K-') 
Bessel function of the first kind of order 

partition coefficient 
step length of polymer chain (m) 
length of fibers per unit volume ( L  = ( 1 / 

length of an individual fiber 
average molecular weight between cross- 

molecular weight ( g  mol-' ) 
number of fibers of length L, 
number of monomers in the chain 
fiber radius (m)  
pore radius (m) 
solute radius (m) 
mean square end-to-end distance ( m2) 
mean square radius of gyration ( m2) 
temperature ( K )  
ratio of monomer to diluent at synthesis 

(g  mL-') 
volume (m3) 
= %C/(lOO - % C )  

dilution ( m2 s-I) 

zero 

V )  Ci n,Li)(rn-') 

links (g mol-') 

ratio of solute radius to pore radius 
volume of pore space per unit volume 
(porosity) 
volume fraction excluded to a point solute 
polymer volume fraction 
viscosity of solvent (kg m-I s-') 
ratio of radius of gyration to pore radius 

mesh size of polymer network (m) 
dimensionless reduced temperature 
[ T =  (T-B)/O] 
temperature where second osmotic virial 
coefficient for polymer becomes zero ( K ) 

(A, = m / r p )  
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